Using XML for Supplemental Hypertext Support
Chao-Min, Chiu;Bieber, Michagel

Information Technology and Management; Jul 2002; 3, 3; ProQuest
pg. 271

k“ Information Technology and Management 3, 271-290, 2002
1~ © 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Using XML for Supplemental Hypertext Support

CHAO-MIN CHIU cmchiu@ccms.nkfu.edu.tw
Department of Information Management, National Kaohsiung First University of Science and Technology,
1 University Rd. Yenchao, Kaohsiung, Taiwan

MICHAEL BIEBER bieber @njit.edu
Collaborative Hypermedia Research Laboratory, Computer and Information Science Department,
New Jersey Institute of Technology Newark, NJ 07102, USA

Abstract. Our overall research goal is providing hypertext functionality through the WWW to hypertext-
unaware information systems with minimal or no changes to the information systems. Information systems
dynamically generate their contents and thus require some mapping mechanism to automatically map the
generated contents to hypertext constructs (nodes, links, and link markers) instead of hypertext links being
hard-coded over static contents. No systematic approach exists, however, for building mapping routines to
create useful links that give users direct access to the ISs’ primary functionality, give access to metainfor-
mation about IS objects, and enable annotation and ad hoc (user-declared) linking. This paper contributes
a procedure for analyzing ISs and building mapping routines that supplement information systems with hy-
pertext support. This paper also contributes an eXtensible Markup Language (XML) DTD that declares a
set of elements and attributes for representing mapped information in a human-readable, machine-readable,
structured, and semantic way. We implemented a prototype to demonstrate the feasibility of using XML to
represent mapped information.

Keywords: hypertext, information systems, mapping mechanism, eXtensible Markup Language, Wrapper,
Relationship-Navigation-Rule analysis, World Wide Web

1. Introduction

Our overall research goal is providing hypertext functionality through the World Wide
Web (WWW) to hypertext-unaware information systems (IS) with minimal or no
changes to the ISs. ISs include financial information systems, accounting information
systems, expert systems, decision support systems, etc. ISs dynamically generate their
contents and thus require some mapping mechanism to automatically map the generated
contents to hypertext constructs (nodes — documents and screens, links — commands and
relationships, and link markers — for selecting links) instead of hypertext links being
hard-coded over static contents [14].

What benefit do users gain from providing information systems with hypertext
support? Users may find it difficult to understand and take advantage of the myriad of
inter-relationships in an information system’s knowledge base (data, processes, calcu-
lated results, and reports). Hypertext helps by streamlining access to, and providing rich
navigational features around related information, thereby increasing user comprehension

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

272 CHIU AND BIEBER

of information and its context [6]. Augmenting an information system with hypertext
support results in new ways to view and manage the information system’s knowledge,
by navigating among items of interest and annotating with comments and relationships
(links) [7,8].

No systematic approach exists, however, for building mapping routines to integrate
an information system with the WWW and give users direct access to interrelationships
among objects of the information system. This paper proposes a systematic dynamic-
mapping mechanism for mapping outputs from an information system to hypertext con-
structs.

Why do we use XML for representing mapped information? There are three major
text-based markup languages for interchanging and publishing documents in a standard
and open format: Standard Generalized Markup Language (SGML), eXtensible Markup
Language (XML), and HTML. SGML and XML are well-accepted and standard meta-
languages for describing markup languages. SGML allows the development of custom
and domain-specific document formats through Document Type Definitions (DTDs).
A DTD is a set of rules defining the logical sequence of elements within an SGML
or XML document and specifying the allowed content and attributes of each element.
However, SGML is too complicated for most WWW use due to its overwhelming num-
ber of options and customization features [12,19]. XML [11] is a subset metalanguage
of SGML designed specifically to deliver information over the WWW [19,23]. HTML
is a markup language and is therefore called an “SGML application”, as opposed to a
metalanguage. HTML is for marking up document elements, but not for semantic meta-
data. (Metadata provides information about the data and the elements within a document,
helpful in conveying the meaning and attributes about each in a machine-readable for-
mat.) HTML only supports a fixed and limited tagset that conveys display information
about elements, such as making them boldface. ISs need to process data, not only display
them. Therefore, when reengineering IS applications for the Web, XML is recognized
as a better approach than HTML because it offers extensible, human-readable, machine-
readable, semantic, structural, and custom markup.

Resource Description Framework (RDF) is an application of XML which goal
is providing interoperable and machine-understandable metadata about Web resources
(e.g., Web pages) [24]. RDF enables the consistent encoding, exchange, and reuse of
structured metadata and automated processing of Web resources [24]. We define our
own XML DTD instead of using RDF for two reasons. First, RDF provides a general
syntax for expressing metadata. RDF itself does not provide any predefined vocabularies
for authoring metadata [10], which our XML DTD does. However, some of vocabular-
ies (e.g., “Dublin Core”) will emerge in the foreseeable future. Second, browsers that
support RDF were not available when we implemented the prototype.

This paper makes two contributions. First, we propose a procedure for analyzing
ISs and building mapping routines. Mapping routines create useful links that give users
direct access to the ISs’ primary functionality, give access to metadata about IS objects,
and enable annotation and ad hoc links. Second, we define a XML DTD that declares
a set of elements and attributes for representing mapped information generated by in-

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanny.manaraa.com

USING XML FOR SUPPLEMENTAL HYPERTEXT SUPPORT 273

formation systems. We have implemented a prototype to demonstrate the feasibility of
using XML to represent mapped information.

This paper is organized as follows. Section 2 reviews some approaches to inte-
grating information systems with the WWW. In section 3 we propose a conceptual ar-
chitecture for interfacing ISs with the Web. Section 4 presents a procedure for building
mapping routines and specifies our XML DTD. In section 5 we discuss future work.
Section 6 concludes with a larger view of our research.

2. Integrating information systems with hypertext support

Hypertext researchers have developed several hypertext features to help users easily nav-
igate information, and reduce cognitive overhead and disorientation (i.e., becoming “lost
in the hyperspace” [18]). Those supports include backtracking [27], history lists [29],
guided tours [28], overview diagrams [17,29], paths [28], structure-based query [25],
timestamps [26], footprints [26], fisheye viewer [20], annotation [2,13], etc.

Many approaches exist for integrating information systems into the WWW, such as
Common Gateway Interface (CGI) and Active Server Pages (ASP) used to interface the
WWW server and external programs and scripts. Both CGI scripts and ASP programs
are invoked by a WWW server to process users’ inputs and generate HTML documents
dynamically. No systematic approach exists, however, for dynamically supplementing
an information system with hypertext support through the WWW and giving users direct
access to its interrelationships. Many information systems resources have been made
available to users through the WWW. However, those implementations do not meet our
criteria for integration with ISs since they do not create useful links that give users direct
access to the ISs’ primary functionality, give access to metainformation about IS objects,
and enable annotation and ad hoc links. For example, the following cases do not meet
our criteria:

o Most Web database applications handle queries and generate HTML documents from
query results without mapping query results to useful links that allow users to view
and manage the DBMSs’ contents, navigate among related items of interest or anno-
tate with comments and links.

o WWW search engines use simple mapping mechanisms to map a query result to a
dynamically generated Web page with links based on the “URL address” and “page
title” for each hit.

o The Web Interface Definition Language [3] is an application of the XML that pro-
vides interfaces and services to automate the process of information access to remote
applications and systems. Web Interface Definition Language services are like CGI
scripts or other back-end Web server programs. A service takes input parameters,
performs some processing, and then returns a dynamically generated HTML, XML,
or text document to Web browser for display.

Only two systematic approaches exist for reengineering applications for the
WWW: Bieber’s two-stage Web Engineering [5] and our four-step RNRA approach.

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanny.manaraa.com

274 CHIU AND BIEBER

With Web Engineering, first the software engineer performs a Relationship-Navigation
Analysis (RNA), analyzing the application specifically in terms of its intra- and inter-
relationships. RNA has 5 steps: stakeholder analysis, element analysis, relationship and
metainformation analysis, navigation analysis, and relationship and feasibility analy-
sis. Second, a Dynamic Hypermedia Engine (DHymE) automatically generates links for
each of these relationships and metainformation items at run-time, as well as sophisti-
cated hypermedia navigation techniques not often found on the Web (e.g., guided tours,
overviews, and structural query [9]) on top of these links.

The major difference between Web Engineering and our RNRA approach is that we
clearly define the transition from determining the relationships to implementing the map-
ping. RNA supplements our mapping mechanism. Combining RNA and our mapping
routine approach forms our Relationship-Navigation-Rule Analysis (RNRA) technique
for engineering applications for the World Wide Web.

We have successfully implemented a prototype to demonstrate the feasibility of
using our RNRA approach to analyze and XML to represent mapped information. Bieber
currently is integrating several applications with DHymE, automatically giving each a
Web interface or supplementing its existing Web interface. A major difference between
our prototype and Bieber’s DhymE is the way of displaying mapped information (i.e.,
XML documents). Our prototype uses eXtensible Stylesheet Language (XSL) to display
XML documents. However, the DhymE’s browser wrapper converts XML documents
to HTML format for display. The contribution of this paper is on the RNRA approach.
RNRA easily would support integrating applications with Bieber’s engine as well as any
other systems that would map hypermedia functionality dynamically to applications. But
in fact, no other general approaches or prototypes have ever been developed to reengineer
applications for the WWW by providing run-time mapping of application information
and relationships to hypermedia constructs.

3. System architecture

In this section, we propose a framework with seven logical components. This architec-
ture emphasizes the integration of the WWW with ISs, providing hypertext functionality
to each IS. Figure 1 sketches the architecture with three example ISs. Different imple-
mentations may implement these logical components in different ways. Our prototype
demonstrates one possible implementation. Since the WWW browser and server are nor-
mal WWW components, we will only describe the functionality of other components:

e An IS is an application system, with which users interact to perform certain tasks.
As a result the IS dynamically produces output content for display. ISs are often
application packages. IS instances are written within an IS package (e.g., individual
worksheets are instances of a spreadsheet, and a database in an instance of a database
management system).

o An IS wrapper translates and routes messages between its IS and the WWW server.
An IS wrapper also provides information to map links and nodes on top of the out-

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanny.manaraa.com

Linkbase

[—

USING XML FOR SUPPLEMENTAL HYPERTEXT SUPPORT

WWW
Browser

L)

WWW
Server

v

Master
‘Wrapper

Knowledge
Base

—]

A/T_\;

IS IS IS
Wrapper 1 Wrapper 2 ‘Wrapper n
, i
Application 1 Application 2 Application n
(DBMS) (DSS) (FIS)

275

Information Systems (IS)

Figure 1. A framework for integrating information systems into the WWW.

puts of its IS. An IS wrapper must map commands selected by the user on the WWW
browser to the corresponding IS commands and invoke its IS to execute them. A com-
prehensive IS wrapper will allow us to integrate an existing IS with few or no changes.

o The knowledge base stores commands for accessing various relationships on IS
objects that cannot be accessed directly from ISs (e.g., relationships in entity—
relationship diagrams).

e The linkbase stores user-created annotations and ad hoc links.

o The master wrapper coordinates relationship mapping and message passing among
different IS application domains, thus aiding IS-to-IS integration. It provides the
following functionality: (1) decodes attributes (e.g., object type, object ID and com-
mand) that underlie a link anchor, (2) searches the knowledge base for commands that
implement various relationships from the selected IS object based on the object type,
(3) maps commands to link anchors, and (4) forms an XML document that includes
the mapped link anchors and send the document to the WWW server. Note that the
master wrapper can be implemented with CGI programs, server-side Java, ASP, etc.

To integrate a new IS with the WWW and provide it with hypertext support, one
has to build a wrapper, declare mapping routines within it and the master wrapper, and
store information (e.g., commands and access information) in the knowledge base. One
set of mapping routines can serve all instances of an IS.

We use two mapping routines; Command_Routine and Object_Routine. How do
mapping routines work? Suppose that within our financial analysis system shown in
figure 5, a user wants to conduct the Earnings Before Income Tax—Earnings Per Share
(EBIT-EPS) analysis for 1998. First the user clicks on the hyperlink labeled “Y1998.”
The Object_Routine will be invoked by the Web server to search for available com-
mands, map them to hyperlinks, and then deliver an XML document containing them

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanny.manaraa.com

276 CHIU AND BIEBER

Is E (The top-level IS element.)

(Tt represents an IS object or command for accessing various relationship on
the selected object. It could be displayed like a hyperlink.)

(It represents a paragraph.)

(It is a container for four elements representing relationships.)

(Tt represents an IS object.)

(It represents metainformation.)

(It represents a relationship between two IS objects.)

(It represents an annotation (i.e., comment) on an IS object.)

(It represents the subject of a comment.)

(It represents the author of a comment.)

(1t represents the date of a comment.)

(Tt represents the content of a comment.)

Figure 2. The logical structure of our DTD.

to the browser for display. Then the user clicks on the command hyperlink labeled
“ShowData.” The Command_Routine will be invoked to execute the “ShowData” com-
mand. The Command_Routine will send parameters to the financial information system,
receive results of the EBIT-EPS analysis, mark up information objects within it as hy-
perlinks, and then send the resulting XML document to the browser for display.

4. Building mapping routines

In this section, we present a four-step process for analyzing ISs and building mapping
routines that convert dynamically generated information to hypertext constructs (nodes,
links, and anchors). These routines reside in and become invoked by the master wrapper
or IS wrapper. We explain each by using our Financial Information System in Microsoft
Excel (FISME) as the target IS. When providing large information systems with hyper-
text support, a facility that automatically creates useful links from dynamically gener-
ated information will be helpful. Mapping routines make extensive use of three features
that Halasz [22] identified among outstanding issues in hypermedia research over ten
years ago, and which still have not been addressed in many hypermedia or WWW ap-
plications: (1) creating and manipulating virtual structures of hypermedia components;
(2) computing over the knowledge base during link traversal; and (3) tailoring the hyper-
media network [4]. Information systems in which component type or classes are easily

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanny.manaraa.com

USING XML FOR SUPPLEMENTAL HYPERTEXT SUPPORT 277

T T e

i
ool eywsnness
O

o

it

b

< e e

i

MasterWragperasp

¥ LI

e Wt
Retrowy summands

- wseee g

T Pyt

3
]
1
1
i
1
1
{
1
1
1
i
P
s N
}
1
1
i
1
1
{
1
i
1
i
{
i
]
1

A
. Ay

xaiabrase

f
i
[
I
b
f
b
I
}
i
i
f
i
J
!
f
I
I
b
]
f
I
}
;
f
f
I
}
i
f
f

e i e i e e e e

Figure 3. The program flow of MasterWrapper.asp. Note that AIS stands for accounting information
systems and FIS stands for financial information systems.

recognized can benefit most easily from the automatic link generation approach [21].
Many of these systems have application programming interfaces (APIs), which facilitate
integration with a wrapper.

4.1. Step 1. Identify IS objects

This step is to identify data objects in which we are interested. In our Financial Infor-
mation System in Microsoft Excel (FISME), objects include workbooks, worksheets,
and cells. This corresponds to RNA’s element analysis stage, which currently awaits
development [30,31].

4.2. Step 2. Identify relationships among IS objects
Bieber and Vitali [8] and Yoo and Bieber [30,31] identify several types of relationships

for system objects. Identifying these explicit and implicit relationships forces developers
to consider which information users are interested in and then build mapping routines to

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanny.manaraa.com

278 CHIU AND BIEBER

FiS Wrappssasy
J oo o ey FAS WY Rdpper gl

. Sk Bxplaing) g e
- §
Pssre sl
y PEPR rsppres L
sad pand

&

parsnsiuy g

o Exesd E‘
TR

e
I

f

i Fansaseter
] <

i

f

f

]

]

f

Lommand Hoeutine

Suk Showllata()

shiwialy

LATRT
R N

1
1
1
1
1
1
1
i
1
1
1
1
1
1
1
1
)
1
4
1
i
1
1
I
i
i
1
1
1
1
1
1
1
1
wd

Figure 4. The program flow of FIS Wrapper (i.e., FISWrapper.asp and FISWrapper.dll combined), detailing
the “Explain” and “ShowData” commands.

access this information. This corresponds to the relationship analysis stage of RNA. Yoo
and Bieber [32] and Yoo [30] provide detailed guidelines for conducting a relationship
analysis.

Each of the following relationships gives the user easy access to some aspect of
an object. Sometimes the destination of meaningful relationships are not found within
any IS, so developers have to declare the methods to execute them and store these in the
knowledge base. We have implemented the following five relationship types explicitly
in our prototype, as a proof of concept:

o Schema relationships: Access to the kind of domain-specific relationships in a
schema or application design.

o Operational relationships: Direct access to IS objects resulting from or arrived at

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanny.manaraa.com

USING XML FOR SUPPLEMENTAL HYPERTEXT SUPPORT 279

Figure 5. This figure shows the interface of our prototype. This system has three frames: system structure,
command, and content.

from using operational commands supported by the IS. In our FISME prototype, this
includes Excel commands over specific objects.

o Structural relationships: Access to related objects based on the application’s internal
structure. In our FISME prototype, these include “contains” links among workbooks,
worksheets, and cells.

o Metainformation relationships: Access to attributes of and descriptive information
about IS objects. In our FISME prototype, these include its formulas, explanations,
cell types, etc.

o Annotative relationships: Relationships declared by users instead of being mapped
from the system structure. All users should be able to annotate objects even when
the application does not allow direct write access. A linkbase will store user-created
links and comments.

We have defined an XML DTD that declares a set of elements and attributes for
representing relationships. Appendix A contains the full DTD along with an explanation
of each keyword. Figure 2’s XML element tree shows the logical structure of our DTD.

The three examples in tables 1-3 demonstrate how to use our elements and at-
tributes to represent various relationships. Note that FIS stands for financial infor-

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanny.manaraa.com

280 CHIU AND BIEBER

Table 1
An XML document representing structural relationships in our FISME prototype. These repre-
sent some components of the system structure frame in figure 5.

<? XML VERSION = “1.0" 7>

<! DOCTYPE Is SYSTEM “Is.DTD”’>

<Is>

<Rel Type="Structural” ObjectID="FIS”’>
<Component [d="FIS,FI.” Name="FL.” Level="1">Financial Leverage</Component>
<Component [d="FIS,FL,EBIT-EPS” Name="EBIT-EPS” Level="2">EBIT/EPS</Component>
<Component ID="FIS,FL,FL-OL-TL” Name="FL-OL-TL” Level="2">Financial

Leverage/Operating Leverage/Total Leverage</Component>

Table 2
An XML document representing metainformation relationships for a FISME cell. These repre-
sent components of the pop-up window in figure 6.

<? XML VERSION = “1.0” 7>
<! DOCTYPE Is SYSTEM “Is.DTD”>
<Is>
<Rel Type="“Metainformation” ObjectID=" FIS,FL,EBIT-EPS,Y1998,C3">
<Info Type="Text”>EPS: A company’s net profit minus its preferred stock obligations, with the
difference divided by the number of outstanding shares of common stock.</Info>
</Rel>
</Is>

Table 3
An XML document that representing an annotative relationship for a FISME worksheet. These
represent components of the comment in figure 10.

<? XML VERSION = “1.0” 7>
<! DOCTYPE Is SYSTEM “Is.DTD”>
<Is><Rel Type="Annotative” ObjectID="FIS, FL,EBIT-EPS,Y1998">
<Comment>
<Subject>More Explanation</Subject> <Id>FIS, FL,EBIT-EPS,Y 1998</Id>
<Author> C.M. Chiu</Author> <Date>4/20/1999 02:17:36 PM</Date>
<Content>Trends in EPS can be used to identify potential earning dilution on a per-share
basis.</Content>
</Comment>
</Rel></Is>

mation system. The tables describe XML documents that underlie the system struc-
ture frame of figure 5, the pop-up window in figure 6, and figure 10, respectively.
Figure 5 shows the interface of our prototype. The interface contains three frames:
system structure, command, and content. The system structure frame lists all finan-

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanny.manaraa.com

USING XML FOR SUPPLEMENTAL HYPERTEXT SUPPORT 281

B R R

3IT/EP

BN

Commend 294
CORITON

Frymeuly =

Z

W
RCRE

Py
RN
W

Figure 7. Output of executing the “DrawChart” command.

cial analysis functions of our prototype, which include EBIT/EPS, financial leverage,
operational leverage, etc. figures 6—10 show outputs of executing some system com-
mands.

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanny.manaraa.com

282 CHIU AND BIEBER

R N R e e R R S FLERUT-EVORIR S

B i A A e A A

Content

HTrends w EPS can beoased $5
Sadenafe podentid sanng

Figure 10. Output of executing the “view comment” command.

4.3. Step 3. Identify commands for accessing each relationship

The commands underlying the <Rule> tags (see table 5) give users direct access to var-
ious relationships on IS objects. In this step we need to identify the actual implementa-
tion commands for every relationship found in step 2. Then we can build the relationship
mapping routines. Table 4 lists some of these commands for worksheet and cell relation-
ships. The display labels for these commands may be different from the actual system
commands that the IS wrapper passes to the IS for execution.

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanny.manaraa.com

USING XML FOR SUPPLEMENTAL HYPERTEXT SUPPORT 283

Table 4
Selected commands underlying worksheet and cell relationships.

Object Relationships Commands Functionality

Sheet Operational DrawChart Draw a chart based on values of the selected sheet

Sheet Structural ShowData Show contents of a sheet

Sheet Annotative Add Create comments on a sheet

Sheet Annotative View View comments on a sheet

Sheet Operational NewSheet Create a new Excel sheet

Cell Operational Update Change the value of a cell and propagate changes

Cell Metainformation Explain Get the explanation or formula of a cell

Cell Annotative Add Create comments on the selected cell

Cell Annotative View View comments on the selected cell

Cell Metainformation Display Display the formula (in Excel format) of a cell
Table 5

This table lists commands for a FIS worksheet. Commands underlying the <Rule> tags give
users direct access to various relationships on IS objects.

<? XML VERSION = “1.0” 7>

<! DOCTYPE Is SYSTEM “Is.DTD”’>

<Is>

Available Commands

<Rule Type="“Command” Show="New” Href=http://127.0.0.1/fis/cgi-bin/MasterWrapper.asp
ObjectID="FIS,FL,EBIT-EPS,Y 1998” ObjectType="Sheet” Command="ShowData”>

showData</Rule>

</Is>

4.4. Step 4. Build mapping routines

We identify two mapping routines: Object_Routine and Command_Routine. Ob-
ject_Routine is invoked to generate a list of links when the user selects an anchor with
a <Rule> tag representing an IS object. Command_Rroutine is invoked to generate the
link destination document when the user selects a command link. For clarity we discuss
mapping routines in terms of functional procedural calls.

Figures 3 and 4 show the program flow of Object_Routine and Command_Routine.
We use our FISME prototype as the example IS. The master wrapper is an ASP pro-
gram (i.e., MasterWrapper.asp). The IS wrapper has two parts: an ASP program (i.e.,
FISWrapper.asp) and a DLL (i.e., FISWrapper.DLL) built using Visual Basic. ASP is
Microsoft’s browser-independent and server-dependent scripting language for interact-
ing with external resources. An ASP program is a text file with an .asp extension that
contains combination of XML statements and server-side scripts. Server-side scripts are
written in VBScript, JScript, or other compliant scripting languages. Web servers that
support ASP include Microsoft’s Internet Information Server (IIS) and Personal Web
Server (PSW). An ASP program is invoked by the Web server to process a user’s re-

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanny.manaraa.com

284 CHIU AND BIEBER

quest, dynamically generate XML statements, and then deliver them to the browser for
display.

eXtensible Stylesheet Language (XSL) is currently being developed by the W3C
XSL Working Group. XSL is a language for specifying the presentation of XML docu-
ments [1]. XSL consists of two techniques: transforming XML documents into another
structure and specifying formatting semantics of the transformed information [1]. In-
ternet Explorer 5.0 supports a subset of W3C’s XSL (second XSL Working Draft). Our
prototype uses the XSL technology of IE 5.0 to display XML documents and manipulate
links.

4.5. Object_Routine(System, ObjectType)

This rule searches the knowledge base for commands accessing various relationships
on the selected IS object and converts them to <Rule> tags (i.e., hyperlinks). This rule
should be included in the master wrapper (see figure 3). As figure 1 shows, a WWW
server can integrate with multiple ISs so we need the “System” parameter to discrim-
inate among different ISs. The first parameter of ObjectID is the “System” parame-
ter.

Object_Routine should provide the following functions:

(1) search the knowledge base for commands accessing various relationships on the
selected IS object;

(2) map commands to <Rule> tags;

(3) form a XML document that includes mapped <Rule> tags and sends the document
to the Web server.

For example, Object_Routine(“FIS”, “Sheet”) will execute the aforementioned
functions and create the XML document in table 5. As an example, we list the “Show-
Data” command here. Of course, the system would present all commands (or a filtered
subset). Table 4 lists some available commands.

Note that the master wrapper is an Active Server Page (ASP) application called
“MasterWrapper.asp.” The <Rule> tag is displayed as a hyperlink. This type of <Rule>
tag is called a command <Rule> tag since the value of the “Type” attribute is “Com-
mand.” In the command <Rule> tag, the value of the “Command” attribute is “Show-
Data” instead of “No.” When a user clicks on this link, the “FISWrapper.asp” application
will be invoked and then the Command_Routine will be called.

4.6. Command_Routine(Command, ObjectID, ObjectType)

Command_Routine sends system commands to ISs and maps information objects dy-
namically generated by ISs to <Rule> tags (i.e., hyperlinks). This routine should be
included in the IS wrapper (see figure 4). The “Command” parameter passes descriptive
information about the actual IS command.

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanny.manaraa.com

USING XML FOR SUPPLEMENTAL HYPERTEXT SUPPORT 285

Table 6
Possible identifiers for FIS objects.

Object type ObjectID structure ObjectID example
Subsystem System,Subsystem “FIS,FL”
‘Workbook System,Subsystem, Workbook “FIS,FL.EBIT-EPS”
Sheet System,Subsystem, Workbook,Sheet “FIS,FL,EBIT-EPS,Y 1998”
Cell System,Subsystem, Workbook,Sheet,Cell “FIS,FL.EBIT-EPS,Y1998,A3”

Table 7

This table lists <Rule> tags that represent objects of a FIS worksheet.

<? XML VERSION = “1.0” 7>

<! DOCTYPE Is SYSTEM “Is.DTD”>

<Is>

<Rule Type="Object” Show="Replace” Href="http://127.0.0.1/fis/cgi-bin/MasterWrapper.asp”
ObjectID="FIS,FL,EBIT-EPS,Y 1998,A3” ObjectType="Cell”
Command="“No”>EBIT</Rule>

</Is>

The object identifier (ObjectID) is the key to determine which object of the given
system the command should operate on. To aid the reader in understanding our exam-
ples, the following table lists possible identifiers for FIS objects. For example, the Ob-
jectID “FIS,FL,EBIT-EPS” means the “EBIT-EPS” workbook of the “FL” subsystem.
FIS stands for financial information system.

We divide the Command_Routine into sub-procedures (see figure 4) which should
provide the following functions:

(1) map commands marked in the wrappers to actual IS commands;

(2) send actual commands and other parameters (e.g., ObjectID) to the IS;

(3) receive output from the IS;

(4) convert dynamically generated information objects to <Rule> tags (i.e., hyperlinks);

(5) create the XML document with <Rule> tags and send the document to the Web
server.

Here is an example in which the command accesses a structural relationship (from
step 2). Command_Routine(“ShowData”, “FIS,FL,EBIT-EPS,Y1998”, “Sheet”) will
execute the five aforementioned functions and send the XML document in table 7 to
the WWW server. As an example, we just list the cell “EBIT” here.

This type of <Rule> tag is called an object <Rule> tag since the value of the “Type”
attribute is “Object”. In the object <Rule> tag, the value of the “Command” attribute is
“No”. When a user clicks on the <Rule> tag, the “MasterWrapper.asp” application will
be invoked and then the Object_Routine will be called to infer available commands for
this object.

In figures 5-10, we present the interface and some outputs of our prototype.

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanny.manaraa.com

286 CHIU AND BIEBER

5. Future work

Our mapping routines convert commands and information objects to useful links that
give users direct access to an ISs’ primary functionality, give access to various relation-
ships about IS objects, and enable annotation and ad hoc links. In this paper, we defined
an XML DTD to demonstrate its feasibility for representing mapped information gen-
erated by information systems. We also described a prototype implementing it for a
financial information system.

Future research could integrate our prototype with more information systems to
examine the completeness of our DTD. Information systems have different information
structures and relationships, so we may need to add more elements and attributes to our
DTD to integrate with the larger universe of information systems.

We also plan to extend the mapping routines and XML DTD to support sophisti-
cated navigation technique (e.g., guided tours, overviews, and structural query).

Our prototype uses XSL for displaying and manipulating links and just offers sim-
ple linking capability. We shall explore merging our XML DTD with the newly emerg-
ing Web standards for hypermedia linking: XML Linking Language (XLink) and XML
Pointer Language (XPointer). XLink allows authors to create link elements, which rep-
resent relationships between two or more resources (e.g., files, images, and videos) [16].
XLink offers two types of links: simple and extended links. A simple link is the two-
ended inline link. An extended link has more than two participating resources. XLink
provides unidirectional and multidirectional links. A multidirectional link allows users
to initiate the link from more than one of its participating resources. XLink allows links
to be inline or out-of-line. An inline link resides within one of the resources it joins.
An out-of-line link does not reside in any of the resources that it joins. XLink also
supports linkbases, which are XML documents that contain extended, out-of-line links.
XPointer is a mini-language for specifying precise location of sub-parts of an XML doc-
ument [15]. In XLink, one can add a pound sign (#) or a bar (I) to the end of the Uniform
Resource Identifier (URI) and then place the XPointer on the end of that. XLink and
XPointer together will help a browser to jump to an XML document and scroll to the
precise location within it.

Lastly, we intend to develop extensive guidelines for stages 1, 3, and 4 of our
RNRA approach: identify objects, identify relationship commands and build mapping
routines. These guidelines will enable designers and developers to implement an inte-
grative architecture quickly.

6. Conclusion
This paper makes two contributions. First, we propose a procedure for analyzing ISs
and building mapping routines. Second, we define an XML DTD that declares a set

of elements and attributes for representing mapped information in a human-readable,
machine-readable, structured, and semantic way.

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanny.manaraa.com

USING XML FOR SUPPLEMENTAL HYPERTEXT SUPPORT 287

The WWW provides an opportunity to integrate hypermedia into information sys-
tems. We believe that integrating information systems and ISs in the business world
with the WWW should constitute a major thrust for the WWW research. It will go a
long way toward making applications more understandable. When reengineering appli-
cations for the WWW, dynamic relationship mapping could be an effective way to add
additional hypermedia links. This will facilitate adding useful hypertext functionality
to new WWW applications (especially ISs) [7,8]. We hope this paper will call people’s
attention to this opportunity.

XML is becoming increasingly popular for transmitting data within WWW appli-
cations and has been advocated by the hypermedia and WWW research communities for
implementing hypertext linking. Our research shows how to merge these two efforts as
we progress towards the goal of giving hypermedia support to all information systems.

Acknowledgements

We gratefully acknowledge support for this research by the NASA JOVE faculty fel-
lowship program, by the New Jersey Center for Multimedia Research, by the National
Center for Transportation and Industrial Productivity at the New Jersey Institute of Tech-
nology (NJIT), by the New Jersey Department of Transportation, and by the New Jersey
Commission of Science and Technology, and by Rutgers University.

Appendix A

Document type definition for representing IS information.?

<!- The top-level IS element —>

<! ELEMENT Is (Rule [Rel | P) +>

<!- RULE element: represents an IS object or command for accessing various relationships on the
selected object. It could be displayed like a hyperlink. —>

<! ELEMENT Rule (#PCDATA)>

<!- P element: represents a paragraph. —>

<! ELEMENT P (#PCDATA)>

<!- REL element: a container for four elements representing relationships. —>

<! ELEMENT Rel (Comment | Info | Component | Relationship)+>
<!- INFO element: represents metainformation. —>

<! ELEMENT Info (#PCDATA) >

<!- COMPONENT element: represents an IS object. —>

<! ELEMENT Component (#PCDATA) >

<!- RELATIONSHIP element: represents a schema relationship between two IS objects. —>
<! ELEMENT Relationship (#PCDATA)

<!- COMMENT element: represents an annotation (i.e., comment) on an IS object. —

<! ELEMENT Comment (Subject | Author | Date | Content)>
<!- SUBJECT element: represents the subject of a comment. —>

<! ELEMENT Subject (#PCDATA)>

<!- AUTHOR element: represents the author of a comment. —>

<! ELEMENT Author (#PCDATA)>

(Continued on next page)

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanny.manaraa.com

288 CHIU AND BIEBER

(Continued.)

<!- DATE element: represents the date of creating a comment. —>
<! ELEMENT Date (#PCDATA)>
<!- CONTENT element: represents the content of a comment. —>
<! ELEMENT Content (#PCDATA)>
<!- A list of attribute declarations for the Rule element. —>

<! ATTLIST Rule

Type (Object | Command) Object

Href CDATA #REQUIRED
ObjectID CDATA #REQUIRED
ObjectType CDATA #REQUIRED
Show (Embed | Replace | New) “REPLACE”
Command (#PCDATA) #REQUIRED >
<! ATTLIST Rel

ObjectID CDATA #REQUIRED
Type (Schema | Structural | Metainformation | Annotative) #REQUIRED>
<! ATTLIST Info

Type (Text | Number | Formula) #REQUIRED>
<! ATTLIST Component

Name CDATA #REQUIRED
Id CDATA #REQUIRED
Level CDATA #REQUIRED>
<! ATTLIST Relationship

Name CDATA #IMPLIED
From CDATA #REQUIRED
To CDATA #REQUIRED >
4 Notes:

1. Element: A logical unit of information within an XML document.
2. Tag: A tag (e.g., <Rule>) marks an element (e.g., Rule) within an XML document. Some elements
(e.g., Rule) must have start tag (e.g., <Rule>) and end tag (</Rule>).
3. “<!=”and “—>": Comments begin with <!- and end with —>.
4. “”: Indicates that one of a number of elements must be present.
5. “4”: Indicates that an element or group of elements may appear one or more times.
6. “#’: Indicates that the keyword that follows is a reserved word.
7. CDATA: Stands for “character data” and indicates that any ASCII text is allowed for this attribute
value.
8. #PCDATA: Stands for “parsed character data” and indicates that only text is allowed inside an element.
9. #REQUIRED: Indicates that the attribute must appear in the start tag within the XML document.
10. #IMPLIED: Indicates that the attribute value is not required and no default value is provided.
11. ATTLIST: Indicates a list of attribute declarations for a particular element type.
12. Embed: Indicates that the destination document should be embedded in the current document when
the link is traversed.
13. Replace: Indicates that the destination document should replace the current document when the link is
traversed.
14. New: Indicates that the destination document should be displayed in a new window when the link is
traversed.

References

[1] S. Adler, A. Berglund, J. Caruso, S. Deach, P. Grosso, E. Gutentag, A. Milowski, S. Parnell, J. Rich-
man and S. Zilles, Extensible Stylesheet Language (XSL) Version 1.0, http://www.w3.org/TR/xsl/
(2000).

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanny.manaraa.com

USING XML FOR SUPPLEMENTAL HYPERTEXT SUPPORT 289

[2] R. Akscyn, D. McCracken and E. Yoder, KMS: A distributed hypermedia system for managing knowl-
edge in organizations, Communications of the ACM 31 (1988) 820-835.

[3] C. Allen, WIDL: Application integration with XML, XML Special Issue of the World Wide Web
Journal 2 (1997).

[4] M. Bieber, Automating hypermedia for decision support, Hypermedia 4 (1992) 83-110.

[5] M. Bieber, Hypertext and Web engineering, in: Proceedings of Hypertext’98 (1998) pp. 277-278.

[6] M. Bieber and C. Kacmar, Designing hypertext support for computational applications, Communica-
tion of the ACM 38 (1995) 99-107.

[7]1 M. Bieber, H. Oinas-Kukkonen and V. Balasubramanian, Hypertext functionality, ACM Computing
Surveys (forthcoming).

[8] M. Bieber and F. Vitali, Toward support for hypermedia on the World Wide WWW, IEEE Computer
30 (1997) 62-70.

[9] M. Bieber, E. Vitali, H. Ashman, V. Balasubramanian and H. Oinas-Kukkonen, Fourth generation
hypermedia: Some missing links for the World Wide Web, International Journal of Human Computer
Studies 47 (1997) 31-65.

[10] T. Bray, RDF and Metadata, http://www.xml.com/xml/pub/98/06/rdf.html (1998).

[11] T.Bray,J. Paoli and C.M. Sperberg-McQueen, Extensible Markup Language (XML). 1.0, http://www.
w3.0rg/TR/1998/REC-xml-19980210 (1998).

[12] J. Bosak, XML, Java, and the future of the Web, XML Special Issue of the World Wide Web Journal
2 (1997).

[13] T. Catlin, P. Bush and N. Yankelovich, InterNote: Extending a hypermedia framework to support
annotative collaboration, in: Proceedings of Hypertext’89 (1989) pp. 365-378.

[14] C.M. Chiu and M. Bieber, A dynamically mapped open hypermedia system framework for integrating
information systems, Information and Software Technology (forthcoming).

[15] S. DeRose, R. Daniel and E. Maler, XML Pointer Language (XPointer), http://www.w3.org/TR/xptr
(1999).

[16] S. DeRose, E. Maler, D. Orchard and B. Trafford, XML Linking Language (XLink), http:/www.w3.
org/TR/xlink/ (1999).

[17] G.H. Collier, Thoth-II: Hypertext with explicit semantics, in: Proceedings of Hypertext’87 (1987)
pp- 269-290.

[18] J. Conklin, Hypertext: An introduction and survey, [EEE Computer 20 (1987) 17-41.

[19] D. Connolly, R. Khare and A. Rifkin, The evolution of the Web documents: The ascent of XML,
XML Special Issue of the World Wide Web Journal 2 (1997) 119-128.

[20] G.W. Furnas, Generalized Fisheye Views, in: Proceedings of the ACM CHI’86 Conference on Human
Factors in Computing Systems (1986) pp. 16-23.

[21] A. Garrido and G. Rossi, A framework for extending object-oriented applications with hypermedia
functionality, The New Review of Hypermedia and Multimedia 2 (1996) 25-41.

[22] F. Halasz, Reflection on NoteCards: Seven issues for the next generation of hypermedia systems,
Communications of the ACM 31 (1988) 836-855.

[23] R.Khare and A. Rifkin, X marks the spot: Using XML to automate the Web, IEEE Internet Computing
1(1997) 78-87.

[24] O. Lassila and R.R. Swick, Resource Description Framework (RDF) model and syntax specification,
http://www.w3.0org/TR/REC-rdf-syntax (1999).

[25] Y.K. Lee, S.-J. Yoo, K. Yoon and P.B. Berra, Querying structured hyperdocuments, in: Proceedings
of the 29th Annual Hawaii International Conference on System Sciences (1996) pp. 155-164.

[26] J. Nielsen, The art of navigating through hypertext, Communications of the ACM 33 (1990) 296-310.

[27] J. Rosenberg, The structure of hypertext activity, in: Proceedings of Hypertext’96 (1996) pp. 22-30.

[28] R. Trigg, Guided tours and tabletops: Tools for communicating in a hypertext environment, ACM
Transactions of Office Information Systems 6 (1988) 398-414.

[29] K. Utting and N. Yankelovich, Context and orientation in hypermedia networks, ACM Transactions
on Information Systems 7 (1989) 58-84.

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanny.manaraa.com

290 CHIU AND BIEBER

[30] J. Yoo, Relationship analysis, Ph.D. thesis, Rutgers University, Newark, NJ (2000).

[31] J. Yoo and M. Bieber, Towards a relationship navigation analysis, in: Proceedings of the 33rd Hawaii
International Conference on System Sciences (2000).

[32] J. Yoo and M. Bieber, Finding linking opportunities through relationship-based analysis, in: Hyper-
text ‘00 Proceedings (2000) pp. 181-190.

er. Further reproduction prohibited without permissionyww.manaraa.com

